The "Shoulder" and the "Ridge" in PHENIX:

Medium Response to Fast Partons in Heavy Ion Collisions via Di-hadron Correlations

Michael P. McCumber for the PHENIX Collaboration

Quark Matter 2008 Jaipur, India 5 February 2008

Heavy Ion Collisions

Jet Suppression:

- Fast partons lose energy in the medium
- Lost energy should be deposited locally in the medium

Where does the energy go?

- Does anything of the jets remain?
- ▶ Does the lost jet energy elicit a response from the medium?

Two Particle Correlations:

- Jet reconstruction difficult in heavy ion collisions
- Jet physics can still be studied via two-particle correlations

Medium Response

p+p, peripheral Au+Au

central Au+Au

PHENIX poster (Chin-Hao Chen)

Typical:

- Near-side Jet
- Away-side Jet "Head"

New:

- Near-side Modification "Ridge"
- Away-side Modification "Shoulder"

Near-side Ridge theories: Boosted Excess, Backsplash, Local Heating,... Away-side Shoulder theories: Mach, Jet Survival + Recom, Scattering,...

Away-Side Decomposition

Bin Method:

0.03

Bin

NR

- Model independent
- Measures physics of dominant contribution

 $\Delta \phi$ (rad)

- Contamination

Fit Method:

- Model dependent

 $\Delta \varphi$ (rad)

- Needs higher statistics
- Less contamination

Away-side Contributions

Away-side Head:

- Suppressed relative to p-p baseline
- Dominated by shoulder at low pT
- See Hua Pei's talk in Section IX

Away-side Shoulder:

- Strongest at lower p_T (< 4 GeV/c)
- Δφ position largely independent of p_⊤ $(\sim \pi \pm 1.1)$

_{0.4}⊏(a) 3-4 x 0.4-1 GeV/c Au + Au 0-20% 0.2 _{0.04} (b) 3-4 x 2 3 GeV/c =(1/N^a)dN^{ab}/d $\Delta \varphi$ 0.02 .-3 GeV/c (c) <u>ಕ</u> 0.05 _{0.06}[(d) ■-5 GeV/c 0.04 0.02

increasing p_T

Away-side Shoulder Position

- Head region fitted separately
- Position largely independent of both trigger and partner p_T selection

arXiv:0801.4545

Away-side Composition

Shapes:

- Similar shape in away-side mesons and baryons

Ratios:

- Away-side baryon/meson ratios approach inclusive values
- Incompatible with in-vacuum fragmentation

Away-side Shoulder Spectra

p-p baseline:

- Spectral shape depends on trigger p_⊤ selection $(0.55 \to 0.73 \text{ GeV/c})$

Mid-Central → Central Au-Au:

- Medium response dominates the shoulder bin (>50 N_{part})
- Softer than p-p away-side
- Little dependence on trigger p_{T} selection (~0.45 GeV/c)

Away-side by Geometry

Reaction-Plane Binned Triggers from Run 7 with RXPN Detector:

- Reaction-plane resolution sys errors Black lines (correlate in-out)
- BBC-RXPN v₂ sys errors Red lines (anti-correlate in-out)

Near-side Enhancement

- Near-side enhancement at low partner p_T
- No enhancement or suppression at highest p_T
- Apparent "suppression" at low p_T triggers and high p_T partners

$$I_{aa} = \frac{1/N_{Au+Au}^{A} \times N_{Au+Au}^{AB}}{1/N_{p+p}^{A} \times N_{p+p}^{AB}}$$

Near-side Composition & Spectra

 Near-side Baryon/Meson ratio increases in central collisions

data from: arXiv:0712.3033

arXiv:0801.4545

 Near-side spectra are softer than p-p baseline at intermediate p_T

Near-side Ridge

- Broad Δη nearside enhancement measured in Au+Au collisions at intermediate p_T
- High p_T nearsides are similar
- Intermediate p_T
 p+p near-side is
 narrower in Δη
 than central
 collisions

arXiv:0801.4545

- At intermediate p_T , little p-p jet beyond $\Delta \eta > 0.5$

Connections - Centrality

- Away-side
 shoulder and
 near-side ridge
 share a common
 centrality
 dependence
- Scale similarity
 here is largely a
 factor of p_T
 selection

PHENIX poster (Chin-Hao Chen)

Connections - Balance

- Jet & Ridge balances Shoulder & Head
- Ridge & Shoulder balance separately!

 $0.0 < |\Delta \eta| < 0.1$

 $0.5 < |\Delta \eta| < 0.7$

Connections - Spectra

PHENIX poster (Chin-Hao Chen)

- Near-side ridge and away-side shoulder are both softer than p-p counterparts
- Near-side ridge is possibly harder than away-side shoulder
- Away-side shoulder is closest to inclusive hadron slope

Triggering on Medium Response

- 120 deg is a special angle
- Two-sided shoulder mechanisms could create structures at $\Delta \phi = 0$ and $\Delta \phi = \pi$ 1.1

 I_{AA} trigger-partner antisymmetry indicates not all triggers are jet fragments

arXiv:0801.4545

<u>Summary</u>

- PHENIX is measuring both Ridge and Shoulder
- Shoulder & Head variation consistent with contributions of both medium response and suppressed in-vacuum jet fragmentation
- Ridge and Shoulder measurements consistent with <u>medium</u> <u>response</u>, inconsistent with in-vacuum jet fragmentation
- Ridge & Shoulder share much of the same behavior
 - appear at similar p_T
 - similar centrality dependence
 - softer than p-p counterparts
 - baryon-meson ratios larger than jet fragmentation
 - balance p_T
- At low enough p_T , some triggers must come from medium response

Further:

PHENIX posters on intermediate p_T correlations: Inc γ-h correlations – Chin-Hao Chen (PHENIX) h-h correlations – Jiangyong Jia (PHENIX) – P165

Backups

Cent 0-20%

Cent 60-92%

Reaction-Plane Dependence - Full

Fit Method Discussion

Away-side Shoulder Enhancement

Away-side enhancement over p-p baseline is limited to lower partner p_T

Away-side suppressed below p-p values at high p_T

Head and Shoulder suppressions similar at high pT

Head region also shows enhancement at low p_T due to contamination from Shoulder region

Inclusive y-h Correlations

PHENIX Detector

Charged tracking from DC, PC1, and PC3 at mid rapidity, η.

Centrality and Reaction-plane from BBC and ZDC at large $|\eta|$.

Background Subtraction

Acceptance Correction

Rolling buffer mixing

technique

Pooled by Event type:

5cm zvertex

5% centrality

Event N

Event N-1

Event N-2

Event N-3

Event N-4

A B

A B

A B

B

B

B

B

B

The two-arm acceptance effects are removed by building a correction from event mixing.

2D Acceptance

Large Angle Scattering -- Vitev

Angles are typically smaller than observed

Average scattering angle falls with path length

Contrasts our centrality dependence

hep-ph/0501255

<u>Large Angle Scattering - Polosa,</u> Salgado

PRC 75, 041901(R) (2007)

Claim that the similar p_T windows restrict signal to a small number of splittings

Mach Cones

Casalderray, Shuryak, Teaney hep-ph/0411315 Stöcker, Nucl. Phys. **A750** (2005) 121

$$\cos(\theta_M) = c_S$$

 $\theta_{\rm M}$ = 1.2 \rightarrow c_s ~ 0.33 (0.57 in QGP, 0.2 in hadron gas)

 $D \sim 1.0-1.1 \rightarrow c_s \sim 0.45 - 0.54$

Reproduces large angles seen in the data

Expectation of little p_T dependence

Expectation of a beam energy dependence

Mach Cones - Jorge & Edward

First-order phase transition would reflect some Mach Cone

hep-ph/0511263

Mach Cones - Renk & Ruppert

HP 2006

f = 0.5

100 Near→

Longitudinal flow improves the predicted $\Delta \phi$ signal from a Mach Cone

Match to the data requires large fractional energy loss to Mach cone

50

0.15

0.1

Away

Mach Cones - Chaudhuri & Heinz

PRL 97, 062301 (2006)

Assume lost energy is instantaneously thermalized in their hydro simulations

Extract no Mach cone signal

Large energy loss scenarios give "splash-back" signal

Cherenkov - Majumder, Wang

Cherenkov production has "a strong dependence on the gluon momentum"

"disappear for high-energy gluons"

Predict D values will shrink as associated momentum is increased.

PRL **96,** 172302 (2006)

data from: Phys. Rev. Lett. 98, 232302 (2007)

Testing Thickness Scaling

System and Energy Scan

Away-side structure vs. beam species, beam energies, and centrality

All cases:

Peripheral similar to p-p

 Central shows development of "lobe"like structure

N_{part} Shape Scaling

nucl-ex/0611019

Shape saturates above 100 N_{part}